Using the new Uniswap v2 in your contracts

What's new in Uniswap v2 and how to integrate Uniswap v2

What is UniSwap?

If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external liquidity providers that can add tokens to smart contract pools and users can trade those directly.

Since it's running on Ethereum, what we can trade are Ethereum ERC-20 tokens. For each token there is its own smart contract and liquidity pool. Uniswap - being fully decentralized - has no restrictions to which tokens can be added. If no contracts for a token pair exist yet, anyone can create one using their factory and anyone can provide liquidity to a pool. A fee of 0.3% for each trade is given to those liquidity providers as incentive.

The price of a token is determined by the liquidity in a pool. For example if a user is buying TOKEN1 with TOKEN2, the supply of TOKEN1 in the pool will decrease while the supply of TOKEN2 will increase and the price of TOKEN1 will increase. Likewise, if a user is selling TOKEN1, the price of TOKEN1 will decrease. Therefore the token price always reflects the supply and demand.

And of course a user doesn't have to be a person, it can be a smart contract. That allows us to add Uniswap to our own contracts for adding additional payment options for users of our contracts. Uniswap makes this process very convenient, see below for how to integrate it.

Uniswap UI

What is new in UniSwap v2?

  • ERC20 / ERC20 Pairs: In the first version any token had to be paired with ETH. To trade a token with another token, one had to first exchange the first token into ETH and then use that ETH to purchase the other token. Now you can directly trade those!
  • Price Oracles: While theoretically one could use Uniswap v1 as an oracle, it wasn't recommended as prices could flucuate by a lot in a short time making it easy to manipulate. Now there are several mechanisms to prevent this like using the last block price and a cumulative-price that is weighted by the time previous prices existed.
  • Flash Swaps: The Uniswap Flash Swaps are similar to the Aave Flash Loans that you might be familiar with. The same concept is now possible in Uniswap allowing you to optimistically receive tokens as long as you either 1. return them 2. pay for them or 3. partially return/pay for them at the end of the transaction.
  • Some Minor Technical Improvements
  • Path to Sustainability: An option was added that once activated adds a 0.05% trading fee intended for protocol governance. It's not planned to activate this in the near future.

Further Uniswap v2 resources

What happens to UniSwap v1?

"

Uniswap v1 is an automated, decentralized set of smart contracts. It will continue functioning for as long as Ethereum exists.

Hayden Adams

Integrating UniSwap v2

One of the reasons Uniswap is so popular may be the simple way of integrating them into your own smart contract. Let's say you have a system where users pay with DAI. With Uniswap in just a few lines of code, you could add the option for them to also pay in ETH. The ETH can be automatically converted into DAI before the actual logic. It would look something like this

function pay(uint paymentAmountInDai) public payable {
      if (msg.value > 0) {
          convertEthToDai(paymentAmountInDai);
      } else {
          require(daiToken.transferFrom(msg.sender, address(this), paymentAmountInDai);
      }
      // do something with that DAI
      ...
}

A simple check at the beginning of your function will be enough. Now as for the convertEthToDai function, it will look like something this:

function convertEthToDai(uint daiAmount, uint deadline) public payable {
    address[] memory path = new address[](2);
    path[0] = uniswapRouter.WETH();
    path[1] = daiToken;

    uniswapRouter.swapETHForExactTokens.value(msg.value)(daiAmount, path, address(this), deadline);
    
    // refund leftover ETH to user
    msg.sender.call.value(address(this).balance)("");
  }

There are several things to unpack here.

  • Uniswap Router: The uniswapRouter will be a wrapper contract provided by Uniswap that has several safety mechanisms and convenience functions. Currently it is recommended to use the Router02 contract. You can instantiate it using IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D) for any main or testnet. The interface code can be found here.
  • Path: Any swap needs to have a starting and end path. While in Uniswap v2 you can have direct token to token pairs, it is not always guaranteed that such a pair actually exists. But you may still be able to trade them as long as you can find a path, e.g., Token1 → Token2 → WETH → Token3. In that case you can still trade Token1 for Token3, it will only cost a little bit more than a direct swap.
  • WETH: You might notice that we are using WETH here. In Uniswap v2 there are no more direct ETH pairs, all ETH must be converted to WETH first. In our case this is done by the router.
  • swapETHForExactTokens: This function can be used to use ETH and receive and exact amount of tokens for it. Any leftover ETH will be refunded, so make sure you have a fallback function in your contract to receive ETH: receive() payable external {}.  The deadline parameter will ensure that miners cannot withhold a swap and use it at a later, more profitable time. Make sure to pass this UNIX timestamp from your frontend, don't use now inside the contract.
  • Refund: Once the trade is finished, we can return any leftover ETH to the user. This sends out all ETH from the contract, so if your contract might have an ETH balance for other reasons, make sure to change this.

How to use it in the frontend

One issue we have now is when a user calls the pay function and wants to pay in ETH, we don't know how much ETH he needs. We can use the getAmountsIn function to compute exactly that.

function getEstimatedETHforDAI(uint daiAmount) public view returns (uint[] memory) {
    address[] memory path = new address[](2);
    path[0] = uniswapRouter.WETH();
    path[1] = multiDaiKovan;

    return uniswapRouter.getAmountsIn(daiAmount, path);
}

Now we can call getEstimatedETHforDAI in our frontend. To ensure we are sending enough ETH and that the transaction won't get reverted, we can increase the estimated amount of ETH by a little bit:

const requiredEth = (await myContract.getEstimatedETHforDAI(daiAmount))[0];
const sendEth = requiredEth * 1.1;

Fully working example for Remix

Here's a fully working example you can use directly on Remix. It allows you to trade ETH for Multi-collaterized Kovan DAI:

pragma solidity ^0.6.0;

import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Router02.sol";

contract UniswapExample {
  address internal constant UNISWAP_ROUTER_ADDRESS = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ;

  IUniswapV2Router02 public uniswapRouter;
  address private multiDaiKovan = 0x4F96Fe3b7A6Cf9725f59d353F723c1bDb64CA6Aa;

  constructor() public {
    uniswapRouter = IUniswapV2Router02(UNISWAP_ROUTER_ADDRESS);
  }

  function convertEthToDai(uint daiAmount) public payable {
    uint deadline = now + 15; // using 'now' for convenience, for mainnet pass deadline from frontend!
    uniswapRouter.swapETHForExactTokens.value(msg.value)(daiAmount, getPathForETHtoDAI(), address(this), deadline);
    
    // refund leftover ETH to user
    msg.sender.call.value(address(this).balance)("");
  }
  
  function getEstimatedETHforDAI(uint daiAmount) public view returns (uint[] memory) {
    return uniswapRouter.getAmountsIn(daiAmount, getPathForETHtoDAI());
  }

  function getPathForETHtoDAI() private view returns (address[] memory) {
    address[] memory path = new address[](2);
    path[0] = uniswapRouter.WETH();
    path[1] = multiDaiKovan;
    
    return path;
  }
  
  // important to receive ETH
  receive() payable external {}
}

Markus Waas

Solidity Developer

More great blog posts from Markus Waas

  • Matic Logo

    How to use Matic in your Dapp

    Deploying and onboarding users to Matic to avoid the high gas costs

    Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2 . Today we will take a closer look at Matic as a solution for your Dapp. Why Matic...

  • Migrating from Truffle to Buidler

    And why you should probably keep both.

    Why Buidler? Proper debugging is a pain with Truffle. Events are way too difficult to use as logging and they don't even work for reverted transactions (when you would need them most). Buidler gives you a console.log for your contracts which is a game changer. And you'll also get stack traces...

  • Factory

    Contract factories and clones

    How to deploy contracts within contracts as easily and gas-efficient as possible

    The factory design pattern is a pretty common pattern used in programming. The idea is simple, instead of creating objects directly, you have an object (the factory) that creates objects for you. In the case of Solidity, an object is a smart contract and so a factory will deploy new contracts for...

  • IPFS logo

    How to use IPFS in your Dapp?

    Using the interplanetary file system in your frontend and contracts

    You may have heard about IPFS before, the Interplanetary File System. The concept has existed for quite some time now, but with IPFS you'll get a more reliable data storage, thanks to their internal use of blockchain technology. Filecoin is a new system that is incentivizing storage for IPFS...

  • tiny-kitten

    Downsizing contracts to fight the contract size limit

    What can you do to prevent your contracts from getting too large?

    Why is there a limit? On November 22, 2016 the Spurious Dragon hard-fork introduced EIP-170 which added a smart contract size limit of 24.576 kb. For you as a Solidity developer this means when you add more and more functionality to your contract, at some point you will reach the limit and when...

  • EXTCODEHASH

    Using EXTCODEHASH to secure your systems

    How to safely integrate anyone's smart contract

    What is the EXTCODEHASH? The EVM opcode EXTCODEHASH was added on February 28, 2019 . Not only does it help to reduce external function calls for compiled Solidity contracts, it also adds additional functionality. It gives you the hash of the code from an address. Since only contract addresses...

  • Continuous Integration

    Solidity and Truffle Continuous Integration Setup

    How to setup Travis or Circle CI for Truffle testing along with useful plugins.

    Continuous integration (CI) with Truffle is great for developing once you have a basic set of tests implemented. It allows you to run very long tests, ensure all tests pass before merging a pull request and to keep track of various statistics using additional tools. We will use the Truffle...

  • Devcon 6

    Upcoming Devcon 2021 and other events

    The Ethereum Foundation just announced the next Devcon in 2021 in Colombia

    Biggest virtual hackathon almost finished First of all, the current HackMoney event has come to an end and it has been a massive success. One can only imagine what kind of cool projects people have built in a 30 days hackathon. All final projects can be seen at:...

  • ERC-2020

    The Year of the 20: Creating an ERC20 in 2020

    How to use the latest and best tools to create an ERC-20 token contract

    You know what an ERC-20 is, you probably have created your own versions of it several times (if not, have a look at: ERC-20 ). But how would you start in 2020 using the latest tools? Let's create a new ERC-2020 token contract with some basic functionality which focuses on simplicity and latest...

  • hiring

    How to get a Solidity developer job?

    There are many ways to get a Solidity job and it might be easier than you think!

    You have mastered the basics of Solidity, created your first few useful projects and now want to get your hands on some real-world projects. Getting a Solidity developer job might be easier than you think. There are generally plenty of options to choose from and often times not a lot of...

  • People making fun

    Design Pattern Solidity: Mock contracts for testing

    Why you should make fun of your contracts

    Mock objects are a common design pattern in object-oriented programming. Coming from the old French word 'mocquer' with the meaning of 'making fun of', it evolved to 'imitating something real' which is actually what we are doing in programming. Please only make fun of your smart contracts if you...

  • React and Ethereum

    Kickstart your Dapp frontend development with create-eth-app

    An overview on how to use the app and its features

    Last time we looked at the big picture of Solidity and already mentioned the create-eth-app . Now you will find out how to use it, what features are integrated and additional ideas on how to expand on it. Started by Paul Razvan Berg, the founder of sablier , this app will kickstart your frontend...

  • Solidity Overview

    The big picture of Solidity and Blockchain development in 2020

    Overview of the most important technologies, services and tools that you need to know

    Now, I do not know about you, but I remember when I first started with Solidity development being very confused by all the tools and services and how they work in connection with one another. If you are like me, this overview will help you understand the big picture of Solidity development. As I...

  • Design Pattern Solidity: Free up unused storage

    Why you should clean up after yourself

    You may or may not be used to a garbage collectors in your previous programming language. There is no such thing in Solidity and even if there was a similar concept, you would still be better off managing state data yourself. Only you as a programmer can know exactly which data will not be used...

  • How to setup Solidity Developer Environment on Windows

    What you need to know about developing on Windows

    Using Windows for development, especially for Solidity development, can be a pain sometimes, but it does not have to be. Once you have configured your environment properly, it can actually be extremely efficient and Windows is a very, very stable OS, so your overall experience can be amazing. The...

  • Avoiding out of gas for Truffle tests

    How you do not have to worry about gas in tests anymore

    You have probably seen this error message a lot of times: Error: VM Exception while processing transaction: out of gas Disclaimer : Unfortunately, this does not always actually mean what it is saying when using Truffle , especially for older versions. It can occur for various reasons and might be...

  • Design Pattern Solidity: Stages

    How you can design stages in your contract

    Closely related to the concept of finite-state machines, this pattern will help you restrict functions in your contract. You will find a lot of situations where it might be useful. Any time a contract should allow function calls only in certain stages. Let's look at an example: contract Pool {...

  • Web3 1.2.5: Revert reason strings

    How to use the new feature

    A new Web3 version was just released and it comes with a new feature that should make your life easier. With the latest version 1.2.5 , you can now see the the revert reason if you use the new handleRevert option. You can activate it easily by using web3.eth.handleRevert = true . Now when you use...

  • Gaining back control of the internet

    How Ocelot is decentralizing cloud computing

    I recently came across an ambitious company that will completely redefine the way we are using the internet. Or rather, the way we are using its underlying infrastructure which ultimately is the internet. While looking at their offering, I also learned how to get anonymous cloud machines, you...

  • Devcon 5 - Review

    Impressions from the conference

    I had a lot to catch up on after Devcon. Also things didn't go quite as planned, so please excuse my delayed review! This year's Devcon was certainly stormy with a big typhoon warning already on day 1. Luckily (for us, not the people in Tokyo), it went right past Osaka. Nevertheless, a lot of...

  • Devcon 5 - Information, Events, Links, Telegram

    What you need to know

    Devcon 5 is coming up soon and there are already lots of events available, information about Osaka and more. Here is a short overview: Events Events Calendar Events Google Docs Events Kickback Most events are in all three, but if you really want to see all, you will have to look at all three...

  • Design Pattern Solidity: Off-chain beats on-chain

    Why you should do as much as possible off-chain

    As you might have realized, Ethereum transactions are anything but cheap. In particular, if you are computing complex things or storing a lot of data. That means sometimes we cannot put all logic inside Solidity. Instead, we can utilize off-chain computations to help us. A very simple example...

  • Design Pattern Solidity: Initialize Contract after Deployment

    How to use the Initializable pattern

    There are a few reasons why you might want to initialize a contract after deployment and not directly by passing constructor arguments. But first let's look at an example: contract MyCrowdsale { uint256 rate; function initialize(uint256 _rate) public { rate = _rate; } } What's the advantage over...

  • Consensys Blockchain Jobs Report

    What the current blockchain job market looks like

    Consensys published their blockchain jobs report which you can checkout in their Blockchain Developer Job Kit . The most interesting aspects are Blockchain developer jobs have been growing at a rate of 33x of the previous year according to LinkedIns jobs report Typical salary is about...

  • Provable — Randomness Oracle

    How the Oraclize random number generator works

    One particularly interesting approach by Provable is the usage of a hardware security device, namely the Ledger Nano S. It uses a trusted execution environment to generate random numbers and provides a Provable Connector Contract as interface. How to use the Provable Randomness Oracle? Use the...

  • Solidity Design Patterns: Multiply before Dividing

    Why the correct order matters!

    There has been a lot of progress since the beginning of Ethereum about best practices in Solidity. Unfortunately, I have the feeling that most of the knowledge is within the circle of experienced people and there aren’t that many online resources about it. That is why I would like to start this...

  • Devcon 5 Applications closing in one week

    Devcon 5 Applications closing

    Watch out for the Devcon 5 applications. You only have one week left to apply either as Buidler Student Scholarship Press Devcon is by far the biggest and most impressive Ethereum conference in the world. And it's full of developers! I am especially excited about the cool location this year in...

  • Randomness and the Blockchain

    How to achieve secure randomness for Solidity smart contracts?

    When we talk about randomness and blockchain, these are really two problems: How to generate randomness in smart contracts? How to produce randomness for proof-of-stake (POS) systems? Or more generally, how to produce trusted randomness in public distributed systems? There is some overlap of...