Design Pattern Solidity: Mock contracts for testing

Why you should make fun of your contracts

Mock objects are a common design pattern in object-oriented programming. Coming from the old French word 'mocquer' with the meaning of 'making fun of', it evolved to 'imitating something real' which is actually what we are doing in programming. Please only make fun of your smart contracts if you want to, but mock them whenever you can. It makes your life easier. 

Unit-testing contracts with mocks

Mocking a contract essentially means creating a second version of that contract which behaves very similar to the original one, but in a way that can be easily controlled by the developer. You often end up with complex contracts where you only want to unit-test small parts of the contract. The problem is what if testing this small part requires a very specific contract state that is difficult to end up in?

You could write complex test setup logic everytime that brings in the contract in the required state or you write a mock. Mocking a contract is easy with inheritance. Simply create a second mock contract that inherits from the original one. Now you can override functions to your mock. Let us see it with an example.

Example: Private ERC20

We use an example ERC-20 contract that has an initial private time. The owner can manage private users and only those will be allowed to receive tokens at the beginning. Once a certain time has passed, everyone will be allowed to use the tokens. If you are curious, we are using the _beforeTokenTransfer hook from the new OpenZeppelin contracts v3.

pragma solidity ^0.6.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract PrivateERC20 is ERC20, Ownable {
    mapping (address => bool) public isPrivateUser;
    uint256 private publicAfterTime;

    constructor(uint256 privateERC20timeInSec) ERC20("PrivateERC20", "PRIV") public {
        publicAfterTime = now + privateERC20timeInSec;
    }
    
    function addUser(address user) external onlyOwner {
        isPrivateUser[user] = true;
    }

    function isPublic() public view returns (bool) {
        return now >= publicAfterTime;
    }

    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        require(_validRecipient(to), "PrivateERC20: invalid recipient");
    }

    function _validRecipient(address to) private view returns (bool) {
        if (isPublic()) {
            return true;
        }

        return isPrivateUser[to];
    }
}

And now let's mock it.

pragma solidity ^0.6.0;
import "../PrivateERC20.sol";

contract PrivateERC20Mock is PrivateERC20 {
    bool isPublicConfig;

    constructor() public PrivateERC20(0) {}

    function setIsPublic(bool isPublic) external {
        isPublicConfig = isPublic;
    }

    function isPublic() public view returns (bool) {
        return isPublicConfig;
    }
}

You will get one of the following error messages:

  •  PrivateERC20Mock.sol: TypeError: Overriding function is missing "override" specifier.
  •  PrivateERC20.sol: TypeError: Trying to override non-virtual function. Did you forget to add "virtual"?

Since we are using the new 0.6 Solidity version, we have to add the virtual keyword for functions that can be overriden and override for the overriding function. So let us add those to both isPublic functions.

Now in your unit tests, you can use PrivateERC20Mock instead. When you want to test the behaviour during the private usage time, use setIsPublic(false) and likewise setIsPublic(true) for testing the public usage time. Of course in our example, we could just use time helpers to change the times accordingly as well. But the idea of mocking should be clear now and you can imagine scenarios where it is not as easy as simply advancing the time.

Mocking many contracts

It can become messy if you have to create another contract for every single mock. If this bothers you, you can take a look at the MockContract library. It allows you to override and change behaviours of contracts on-the-fly. However, it works only for mocking calls to another contract, so it would not work for our example.

Mocking can be even more powerful

The powers of mocking do not end there.

  • Adding functions: Not only overriding a specific function is useful, but also just adding additional functions. A good example for tokens is just having an additional mint function to allow any user to get new tokens for free.
  • Usage in testnets: When you deploy and test your contracts on testnets together with your Dapp, consider using a mocked version. Avoid overriding functions unless you really have to. You want to test the real logic after all. But adding for example a reset function can be useful that simply resets the contract state to the beginning, no new deployment required. Obviously you would not want to have that in a mainnet contract.

Markus Waas

Solidity Developer

More great blog posts from Markus Waas

  • How to deploy on Evmos: The first EVM chain on Cosmos

    Deploying and onboarding users to Evmos

    We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain Aurora Chain (NEAR) Optimism But this time we will do into the exciting new world of Cosmos. Many of the most interesting projects are currently building in the ecosystem and you can expect a lot to happen here in...

  • EIP-2535: A standard for organizing and upgrading a modular smart contract system.

    Multi-Facet Proxies for full control over your upgrades

    The EIP-2535 standard has several projects already using it, most notably Aavegotchi holding many millions of dollars. What is it and should you use it instead of the commonly used proxy upgrade pattern? What is a diamond? We're not talking about diamond programmer hands here of course. A diamond...

  • MultiSwap: How to arbitrage with Solidity

    Making multiple swaps across different decentralized exchanges in a single transaction

    If you want maximum arbitrage performance, you need to swap tokens between exchanges in a single transaction. Or maybe you just want to save gas on certain swaps you perform regularly. Or maybe you have your own custom use case for swapping between decentralized exchanges. And of course maybe you...

  • The latest tech for scaling your contracts: Optimism

    How the blockchain on a blockchain works and how to use it

    Have you heard of Optimism? The new Optimistic VM enables Plasma but for smart contracts! What does that mean? Well read on. But what it enables is having a side chain with guarantees of the Ethereum mainnet chain. How cool is that? And you can already use it for several apps on mainnet....

  • Ultimate Performance: The Aurora Layer2 Network

    Deploying and onboarding users to the Aurora Network powered by NEAR Protocol

    We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain But today might be the fastest of them all. On top it's tightly connected to the NEAR protocol ecosystem, a PoS chain with a scalable sharding design. And of course they have a bridge to Ethereum! What is the Aurora...

  • What is ecrecover in Solidity?

    A dive into the waters of signatures for smart contracts

    Ever wondered what the hell the deal is with the ecrecover command in Solidity? It's all about signatures and keys... What is ecrecover ? You may have seen ecrecover in a Solidity contract before and wondered what exactly the deal with this was. Well you came across the EVM precompile ecrecover....

  • How to use Binance Smart Chain in your Dapp

    Deploying and onboarding users to the Binance Smart Chain (BSC)

    Defi has been a major contributor to the Binance Smart Chain taking off recently. Along with increasing gas costs on Ethereum mainnet which are actually at one of the lowest levels since a long time at the time of this writing, but will likely pump again at the next ETH price pump. So how does...

  • Using the new Uniswap v3 in your contracts

    What's new in Uniswap v3 and how to integrate Uniswap v3

    If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external liquidity providers that can add tokens to smart contract pools and...

  • What's coming in the London Hardfork?

    Looking at all the details of the upcoming fork

    The Berlin Hardfork only just went live on April 14th after block 12,224,00. Next up will be the London Hardfork in July which will include EIP-1559 and is scheduled for July 14th (no exact block decided yet). So let's take a look at the new changes and what you need to know as a developer....

  • Welcome to the Matrix of blockchain

    How to get alerted *before* getting hacked and prevent it

  • How to use xDai in your Dapp

    Deploying and onboarding users to xDai to avoid the high gas costs

    Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at xDai as a solution for your Dapp. What are...

  • Stack Too Deep

    Three words of horror

    You just have to add one tiny change in your contracts. You think this will take you only a few seconds. And you are right, adding the code took you less than a minute. All happy about your coding speed you enter the compile command. With such a small change, you are confident your code is...

  • Integrating the new Chainlink contracts

    How to use the new price feeder oracles

    By now you've probably heard of Chainlink. Maybe you are even participating the current hackathon? In any case adding their new contracts to retrieve price feed data is surprisingly simple. But how does it work? Oracles and decentralization If you're confused about oracles, you're not alone. The...

  • TheGraph: Fixing the Web3 data querying

    Why we need TheGraph and how to use it

    Previously we looked at the big picture of Solidity and the create-eth-app which already mentioned TheGraph before. This time we will take a closer look at TheGraph which essentially became part of the standard stack for developing Dapps in the last year. But let's first see how we would do...

  • Adding Typescript to Truffle and Buidler

    How to use TypeChain to utilize the powers of Typescript in your project

    Unlike compiled languages, you pretty much have no safeguards when running JavaScript code. You'll only notice errors during runtime and you won't get autocompletion during coding. With Typescript you can get proper typechecking as long as the used library exports its types. Most Ethereum...

  • Integrating Balancer in your contracts

    What is Balancer and how to use it

    What is Balancer? Balancer is very similar to Uniswap. If you're not familiar with Uniswap or Balancer yet, they are fully decentralized protocols for automated liquidity provision on Ethereum. An easier-to-understand description would be that they are decentralized exchanges (DEX) relying on...

  • Navigating the pitfalls of securely interacting with ERC20 tokens

    Figuring out how to securely interact might be harder than you think

    You would think calling a few functions on an ERC-20 token is the simplest thing to do, right? Unfortunately I have some bad news, it's not. There are several things to consider and some errors are still pretty common. Let's start with the easy ones. Let's take a very common token: ... Now to...

  • Why you should automatically generate interests from user funds

    How to integrate Aave and similar systems in your contracts

    If you're writing contracts that use, hold or manage user funds, you might want to consider using those funds for generating free extra income. What's the catch? That's right, it's basically free money and leaving funds unused in a contract is wasting a lot of potential. The way these...

  • How to use Polygon (Matic) in your Dapp

    Deploying and onboarding users to  Polygon  to avoid the high gas costs

    Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at Polygon (previously known as Matic) as a...

  • Migrating from Truffle to Buidler

    And why you should probably keep both.

    Why Buidler? Proper debugging is a pain with Truffle. Events are way too difficult to use as logging and they don't even work for reverted transactions (when you would need them most). Buidler gives you a console.log for your contracts which is a game changer. And you'll also get stack traces...

  • Contract factories and clones

    How to deploy contracts within contracts as easily and gas-efficient as possible

    The factory design pattern is a pretty common pattern used in programming. The idea is simple, instead of creating objects directly, you have an object (the factory) that creates objects for you. In the case of Solidity, an object is a smart contract and so a factory will deploy new contracts for...

  • How to use IPFS in your Dapp?

    Using the interplanetary file system in your frontend and contracts

    You may have heard about IPFS before, the Interplanetary File System. The concept has existed for quite some time now, but with IPFS you'll get a more reliable data storage, thanks to their internal use of blockchain technology. Filecoin is a new system that is incentivizing storage for IPFS...

  • Downsizing contracts to fight the contract size limit

    What can you do to prevent your contracts from getting too large?

    Why is there a limit? On November 22, 2016 the Spurious Dragon hard-fork introduced EIP-170 which added a smart contract size limit of 24.576 kb. For you as a Solidity developer this means when you add more and more functionality to your contract, at some point you will reach the limit and when...

  • Using EXTCODEHASH to secure your systems

    How to safely integrate anyone's smart contract

    What is the EXTCODEHASH? The EVM opcode EXTCODEHASH was added on February 28, 2019 via EIP-1052. Not only does it help to reduce external function calls for compiled Solidity contracts, it also adds additional functionality. It gives you the hash of the code from an address. Since only contract...

  • Using the new Uniswap v2 in your contracts

    What's new in Uniswap v2 and how to integrate Uniswap v2

    Note : For Uniswap 3 check out the tutorial here. What is UniSwap? If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external...

  • Solidity and Truffle Continuous Integration Setup

    How to setup Travis or Circle CI for Truffle testing along with useful plugins.

    Continuous integration (CI) with Truffle is great for developing once you have a basic set of tests implemented. It allows you to run very long tests, ensure all tests pass before merging a pull request and to keep track of various statistics using additional tools. We will use the Truffle...

© 2024 Solidity Dev Studio. All rights reserved.

This website is powered by Scrivito, the next generation React CMS.