Downsizing contracts to fight the contract size limit
What can you do to prevent your contracts from getting too large?

Why is there a limit?
On November 22, 2016 the Spurious Dragon hard-fork introduced EIP-170 which added a smart contract size limit of 24.576 kb. For you as a Solidity developer this means when you add more and more functionality to your contract, at some point you will reach the limit and when deploying ill see the error:
Warning: Contract code size exceeds 24576 bytes (a limit introduced in Spurious Dragon). This contract may not be deployable on mainnet. Consider enabling the optimizer (with a low "runs" value!), turning off revert strings, or using libraries.
This limit was introduced to prevent denial-of-service (DOS) attacks. Any call to a contract is relatively cheap gas-wise. However, the impact of a contract call for Ethereum nodes increases disproportionately depending on the called contract code's size (reading the code from disk, pre-processing the code, adding data to the Merkle proof). Whenever you have such a situation where the attacker requires few resources to cause a lot of work for others, you get the potential for DOS attacks.
Originally this was less of a problem, because one natural contract size limit is the block gas limit. Obviously a contract needs to be deployed within a transaction that holds all of the contract's bytecode. If you then include only that one transaction into a block, you can use up all of that gas, but it's not infinite. The issue in that case though is that the block gas limit changes over time and is in theory unbounded. At the time of the EIP-170 the block gas limit was only 4.7 million. Now the block gas limit just increased again last month to 11.9 million.
Taking on the fight
Unfortunately, there is no easy way of getting the bytecode size of your contracts. A great tool to help you that is the truffle-contract-size plugin if you're using Truffle.
npm install truffle-contract-size
- Add the plugin to the truffle-config.js:
plugins: ["truffle-contract-size"]
- Run
truffle run contract-size
This will help you figure out how your changes are affecting the total contract sizes.
In the following we will look at some methods ordered by their potential impact. Think about it in the terms of weight-loss. The best strategy for someone to hit their target weight (in our case 24kb) is to focus on the big impact methods first. In most cases just fixing your diet will get you there, but sometimes you need a little bit more. Then you might add some exercise (medium impact) or even supplements (small impact).

Focus on this (big impact):
Separate your contracts
This should always be your first approach. How can you separate the contract into multiple smaller ones? It generally forces you to come up with a good architecture for your contracts. Smaller contracts are always preferred from a code readability perspective. For splitting contracts, ask yourself:
- Which functions belong together? Each set of functions might be best in its own contract.
- Which functions don't require reading contract state or just a specific subset of the state?
- Can you split storage and functionality?
Libraries
One simple way to move functionality code away from the storage is using a library. Don't declare the library functions as internal as those will be added to the contract directly during compilation. But if you use public functions, then those will be in fact in a separate library contract. Consider using for to make the use of libraries more convenient.
Proxies
A more advanced strategy would be proxy system. Libraries use DELEGATECALL
in the back which simply executes another contract's function with the state of the calling contract. Check out this blog post to learn more about proxy systems. They give you more functionality, e.g., they enable upgradability, but they also add a lot of complexity. I wouldn't add those only to reduce contract sizes unless it's your only option for whatever reason.
Then check those adjustments (medium impact):
Remove functions
This one should be obvious. Functions increase a contract size quite a bit.
- External: Often times we add a lot of view functions for convenience reasons. That's perfectly fine until you hit the size limit. Then you might want to really think about removing all but absolutely essential ones.
- Internal: You can also remove internal/private functions and simply inline the code as long the function is called only once.
Avoid additional variables
A simple change like this:
function get(uint id) returns (address,address) {
MyStruct memory myStruct = myStructs[id];
return (myStruct.addr1, myStruct.addr2);
}
function get(uint id) returns (address,address) {
return (myStructs[id].addr1, myStructs[id].addr2);
}
makes a difference of 0.28kb. Chances are you can find many similar situations in your contracts and those can really add up to significant amounts.
Shorten error message
Long revert messages and in particular many different revert messages can bloat up the contract. Instead use short error codes and decode them in your contract. A long message could be become much shorter:
require(msg.sender == owner, "Only the owner of this contract can call this function");
require(msg.sender == owner, "OW1");
Consider a low run value in the optimizer
You can also change the optimizer settings. The default value of 200 means that it's trying to optimize the bytecode as if a function is called 200 times. If you change it to 1, you basically tell the optimizer to optimize for the case of running each function only once. An optimized function for running only one time means it is optimized for the deployment itself. Be aware that this increases the gas costs for running the functions, so you may not want to do it.
Loosing the last few bytes (small impact):
Avoid passing structs to functions
If you are using the ABIEncoderV2, it can help to not pass structs to a function. Instead of passing the parameter as a struct...
function get(uint id) returns (address,address) {
return _get(
myStruct
);
}
function _get(
MyStruct memory myStruct
) private view returns(address,address) {
return (myStruct.addr1, myStruct.addr2);
}
function get(uint id) returns(address,address) {
return _get(
myStructs[id].addr1, myStructs[id].addr2
);
}
function _get(
address addr1, address addr2
) private view returns(address,address) {
return (addr1, addr2);
}
... pass the required parameters directly. In this example we saved another 0.1kb.
Declare correct visibility for functions and variables
- Functions or variables that are only called from the outside? Declare them as
externa
l instead ofpublic
. - Functions or variables only called from within the contract? Declare them as
private
orinternal
instead ofpublic
.
Remove modifiers
Modifiers, especially when used intensely, could have a significant impact on the contract size. Consider removing them and instead use functions.
modifier checkStuff() {}
function doSomething() checkStuff {}
function checkStuff() private {}
function doSomething() { checkStuff(); }
Those tips should help you to significantly reduce the contract size. Once again, I cannot stress enough, always focus on splitting contracts if possible for the biggest impact.
The future for the contract size limits
There is an open proposol to remove the contract size limit. The idea is basically to make contract calls more expensive for large contracts. It wouldn't be too difficult to implement, has a simple backwards compatibility (put all previously deployed contracts in the cheapest category), but not everyone is convinced.
Only time will tell if those limits will change in the future, the reactions (see image on the right) definitely show a clear requirement for us developers. Unfortunately, it is not something you can expect any time soon.
Do you have more methods for reducing the size? What are the best ways in your experience? Let me know in the comments if you know of something.

Do you have more methods for reducing the size? What are the best ways in your experience? Let me know in the comments if you know of something.
Solidity Developer
More great blog posts from Markus Waas
How to use ChatGPT with Solidity
Using the Solidity Scholar and other GPT tips
How to integrate Uniswap 4 and create custom hooks
Let's dive into Uniswap v4's new features and integration
How to integrate Wormhole in your smart contracts
Entering a New Era of Blockchain Interoperability
Solidity Deep Dive: New Opcode 'Prevrandao'
All you need to know about the latest opcode addition
How Ethereum scales with Arbitrum Nitro and how to use it
A blockchain on a blockchain deep dive
The Ultimate Merkle Tree Guide in Solidity
Everything you need to know about Merkle trees and their future
The New Decentralized The Graph Network
What are the new features and how to use it
zkSync Guide - The future of Ethereum scaling
How the zero-knowledge tech works and how to use it
Exploring the Openzeppelin CrossChain Functionality
What is the new CrossChain support and how can you use it.
Deploying Solidity Contracts in Hedera
What is Hedera and how can you use it.
Writing ERC-20 Tests in Solidity with Foundry
Blazing fast tests, no more BigNumber.js, only Solidity
ERC-4626: Extending ERC-20 for Interest Management
How the newly finalized standard works and can help you with Defi
Advancing the NFT standard: ERC721-Permit
And how to avoid the two step approve + transferFrom with ERC721-Permit (EIP-4494)
Moonbeam: The EVM of Polkadot
Deploying and onboarding users to Moonbeam or Moonriver
Advanced MultiSwap: How to better arbitrage with Solidity
Making multiple swaps across different decentralized exchanges in a single transaction
Deploying Solidity Smart Contracts to Solana
What is Solana and how can you deploy Solidity smart contracts to it?
Smock 2: The powerful mocking tool for Hardhat
Features of smock v2 and how to use them with examples
How to deploy on Evmos: The first EVM chain on Cosmos
Deploying and onboarding users to Evmos
EIP-2535: A standard for organizing and upgrading a modular smart contract system.
Multi-Facet Proxies for full control over your upgrades
MultiSwap: How to arbitrage with Solidity
Making multiple swaps across different decentralized exchanges in a single transaction
The latest tech for scaling your contracts: Optimism
How the blockchain on a blockchain works and how to use it
Ultimate Performance: The Aurora Layer2 Network
Deploying and onboarding users to the Aurora Network powered by NEAR Protocol
What is ecrecover in Solidity?
A dive into the waters of signatures for smart contracts
How to use Binance Smart Chain in your Dapp
Deploying and onboarding users to the Binance Smart Chain (BSC)
Using the new Uniswap v3 in your contracts
What's new in Uniswap v3 and how to integrate Uniswap v3
What's coming in the London Hardfork?
Looking at all the details of the upcoming fork
Welcome to the Matrix of blockchain
How to get alerted *before* getting hacked and prevent it
The Ultimate Ethereum Mainnet Deployment Guide
All you need to know to deploy to the Ethereum mainnet
SushiSwap Explained!
Looking at the implementation details of SushiSwap
Solidity Fast Track 2: Continue Learning Solidity Fast
Continuing to learn Solidity fast with the advanced basics
What's coming in the Berlin Hardfork?
Looking at all the details of the upcoming fork
Using 1inch ChiGas tokens to reduce transaction costs
What are gas tokens and example usage for Uniswap v2
Openzeppelin Contracts v4 in Review
Taking a look at the new Openzeppelin v4 Release
EIP-3156: Creating a standard for Flash Loans
A new standard for flash loans unifying the interface + wrappers for existing ecosystems
Tornado.cash: A story of anonymity and zk-SNARKs
What is Tornado.cash, how to use it and the future
High Stakes Roulette on Ethereum
Learn by Example: Building a secure High Stakes Roulette
How to implement generalized meta transactions
We'll explore a powerful design for meta transactions based on 0x
Utilizing Bitmaps to dramatically save on Gas
A simple pattern which can save you a lot of money
Using the new Uniswap v2 as oracle in your contracts
How does the Uniswap v2 oracle function and how to integrate with it
Smock: The powerful mocking tool for Hardhat
Features of smock and how to use them with examples
How to build and use ERC-721 tokens in 2021
An intro for devs to the uniquely identifying token standard and its future
Trustless token management with Set Protocol
How to integrate token sets in your contracts
Exploring the new Solidity 0.8 Release
And how to upgrade your contracts to Solidity 0.8
How to build and use ERC-1155 tokens
An intro to the new standard for having many tokens in one
Leveraging the power of Bitcoins with RSK
Learn how RSK works and how to deploy your smart contracts to it
Solidity Fast Track: Learn Solidity Fast
'Learn X in Y minutes' this time with X = Solidity 0.7 and Y = 20
Sourcify: The future of a Decentralized Etherscan
Learn how to use the new Sourcify infrastructure today
Integrating the 0x API into your contracts
How to automatically get the best prices via 0x
How to build and use ERC-777 tokens
An intro to the new upgraded standard for ERC-20 tokens
COMP Governance Explained
How Compound's Decentralized Governance is working under the hood
How to prevent stuck tokens in contracts
And other use cases for the popular EIP-165
Understanding the World of Automated Smart Contract Analyzers
What are the best tools today and how can you use them?
A Long Way To Go: On Gasless Tokens and ERC20-Permit
And how to avoid the two step approve + transferFrom with ERC20-Permit (EIP-2612)!
Smart Contract Testing with Waffle 3
What are the features of Waffle and how to use them.
How to use xDai in your Dapp
Deploying and onboarding users to xDai to avoid the high gas costs
Stack Too Deep
Three words of horror
Integrating the new Chainlink contracts
How to use the new price feeder oracles
TheGraph: Fixing the Web3 data querying
Why we need TheGraph and how to use it
Adding Typescript to Truffle and Buidler
How to use TypeChain to utilize the powers of Typescript in your project
Integrating Balancer in your contracts
What is Balancer and how to use it
Navigating the pitfalls of securely interacting with ERC20 tokens
Figuring out how to securely interact might be harder than you think
Why you should automatically generate interests from user funds
How to integrate Aave and similar systems in your contracts
How to use Polygon (Matic) in your Dapp
Deploying and onboarding users to Polygon to avoid the high gas costs
Migrating from Truffle to Buidler
And why you should probably keep both.
Contract factories and clones
How to deploy contracts within contracts as easily and gas-efficient as possible
How to use IPFS in your Dapp?
Using the interplanetary file system in your frontend and contracts
Using EXTCODEHASH to secure your systems
How to safely integrate anyone's smart contract
Using the new Uniswap v2 in your contracts
What's new in Uniswap v2 and how to integrate Uniswap v2
Solidity and Truffle Continuous Integration Setup
How to setup Travis or Circle CI for Truffle testing along with useful plugins.
Upcoming Devcon 2021 and other events
The Ethereum Foundation just announced the next Devcon in 2021 in Colombia
The Year of the 20: Creating an ERC20 in 2020
How to use the latest and best tools to create an ERC-20 token contract
How to get a Solidity developer job?
There are many ways to get a Solidity job and it might be easier than you think!
Design Pattern Solidity: Mock contracts for testing
Why you should make fun of your contracts
Kickstart your Dapp frontend development with create-eth-app
An overview on how to use the app and its features
The big picture of Solidity and Blockchain development in 2020
Overview of the most important technologies, services and tools that you need to know
Design Pattern Solidity: Free up unused storage
Why you should clean up after yourself
How to setup Solidity Developer Environment on Windows
What you need to know about developing on Windows
Avoiding out of gas for Truffle tests
How you do not have to worry about gas in tests anymore
Design Pattern Solidity: Stages
How you can design stages in your contract
Web3 1.2.5: Revert reason strings
How to use the new feature
Gaining back control of the internet
How Ocelot is decentralizing cloud computing
Devcon 5 - Review
Impressions from the conference
Devcon 5 - Information, Events, Links, Telegram
What you need to know
Design Pattern Solidity: Off-chain beats on-chain
Why you should do as much as possible off-chain
Design Pattern Solidity: Initialize Contract after Deployment
How to use the Initializable pattern
Consensys Blockchain Jobs Report
What the current blockchain job market looks like
Provable — Randomness Oracle
How the Oraclize random number generator works
Solidity Design Patterns: Multiply before Dividing
Why the correct order matters!
Devcon 5 Applications closing in one week
Devcon 5 Applications closing
Randomness and the Blockchain
How to achieve secure randomness for Solidity smart contracts?