Provable — Randomness Oracle

How the Oraclize random number generator works

One particularly interesting approach by Provable is the usage of a hardware security device, namely the Ledger Nano S. It uses a trusted execution environment to generate random numbers and provides a Provable Connector Contract as interface.

How to use the Provable Randomness Oracle?

Use the example provided, the update() function will retrieve a new random number from the oracle by calling oraclize_newRandomDSQuery() . The calling contract needs to have a __callback function defined for Provable to send the reply to. Beware that for maximum security, you really want two modifcations to the example:

  1. Actually store the query returned oraclize_newRandomDSQuery in the contract and verify it’s matching the query id returned to the callback function.
  2. Remove the require(msg.sender == oraclize_cbAddress()) as it allows Provable to ransom a winning player.

Please also consider front-running when using the random oracle. This is easily possible by designing the system similarly to the future blockhash I mentioned in the previous post.

How does the Provable Randomness Oracle work in detail?

Okay, so let us go in the details, if you are curious on how this actually works. We will call the provider of such a service, e.g., Provable, the data carrier. The Connector Contract expects four parameters:

  • A commitment nonce which must not be known to the data carrier before submitting the request.
  • A time dT in seconds to represent the minimal delay required between submission of the request and response.
  • The public key of the device be to used.
  • The number of random bytes to return, between 1 and 32.

The Ledger Nano S allows running custom applications on it. However, it has some challenging limitations, e.g., a very small volatile as well as a very small non-volatile memory. The proposed secure application by Provable is designed to cope with the Ledger Nano S’ limitations by minimizing the required memory as well as reducing the number of writes. The secure application needs three features for its security:

  • A timer for verifying that the provided time dT has passed.
  • A tamper-resistant memory to hold the private keys without being accessible to the data carrier.
  • A management component for signing and verifying with the public key and the secret private key.

The API, i.e., the functions that can be accessed from the outside, contains four endpoints:

  • Initialization: Run once for the setup.
  • Query Insertion: A new query for a random value can be inserted.
  • Volatile Memory State Import/Export: Export device memory and later import it.
  • Query Execution: The actual generation of the random value.

Initialization: Firstly, depending on the current application’s code and device state, an elliptic curve key pair is generated. Doing that, the generated application session key is bound to an exact behavior. Any changes to the behavior, e.g., updating the firmware or re-installing the application, destroy the application’s session key and would therefore require the generation of a new key. Thus, an existing session key can be verified by looking at the device’s firmware and application code.

Query Insertion: This function enables the insertion of new queries into the tamper-resistant state. It is essential for the security that only one query per query id exists, since with the addition of multiple queries per query id a malicious random data provider can run multiple queries to predict user queries. Storing a mapping for each query id to query data would be impossible with the limited storage available on a ledger. That is why there is an authenticated data structure. It enables the authentication of increasing amounts of data without an increasing demand for storage. The proving is done by a host application which keeps the whole data structure in storage. Only the verification is done on the device itself. The chosen data structure is similar to the merkle patricia trie used by Ethereum. In specific, the tree is characterized as follows:

  • All inner nodes have 16 children.
  • All inner nodes contain the hash over all their children’s entries.
  • All leaf nodes contain either the hashed query parameters or they are empty.
  • The tree has a fixed depth of 64.
  • Each query id is represented by a 64 character hash of that id which is the key for traversing the tree.

The key aspect of such a tree is that only the hash of the root node needs to be stored. The leaf nodes contain the hash over all query parameters, i.e., H(current time, commitment nonce, dT, number of random bytes to return). When inserting new queries, the following steps are required:

  1. Create the leaf node for the query by computing the hash over all query parameters.
  2. Compute the hash of the query id and reverse it.
  3. Traverse the reversed key and at each node: Use the leaf node hash or subsequently computed node hashes. Compute the node hash without the added new query leaf node. If hashes of other nodes are required, they can be retrieved from the host application. Likewise, compute the node hash with the added new query leaf node. Store the newly computed hashes in temporary variables, oldHash and newHash.
  4. Once reached the root node, compare oldHash with the stored root hash. If they match, replace the stored root hash with newHash.

Volatile Memory State Import/Export: A device might be used to serve multiple host applications. Additionally, it might be restarted intentionally or unintentionally. In consequence, functions for importing and exporting the current device state are necessary. For exporting a state, the device signs its current state with its session’s private key. Additionally, it includes its current storage nonce into the signed data. When importing a state, the signature is verified and the storage nonce must match the internal value for the storage nonce. That implies data carriers may not import older device states but only the last one.

Query Execution: Any query can only be executed once: queryInsertionTime + dt < currentTime. The execution itself involves signing the hash of the query parameters with its session’s private key. The number of random bytes requested represent the truncation of the computed signature.

Usage in Ethereum: In a smart contract, the procedure may work the following: The smart contract requiring a random number computes a commitment nonce which is unknown to the data carrier prior to the query submission. See below for the exact procedure for computing such a nonce. The nonce is passed to a data carrier smart contract (the Connector Contract) along with dT, the number of random bytes required and the device’s session public key. The data carrier smart contract subsequently does the following:

  1. Increments the query id counter for the requesting smart contract’s address.
  2. Subtracts a fee from the sender (the requesting smart contract).
  3. Computes the hash over the requesting smart contract’s address and the query id counter.
  4. Triggers the query insertion into the ledger device by emitting a log event.

After a successful query insertion followed by a successful query execution, the generated random bytes along with the query id and the proof are sent to a predefined callback function inside the requesting smart contract. The sent random bytes are only accepted and used once the proof is verified:

  1. The random number must have been generated on a ledger device. The ledger proof can verify this.
  2. The commitment nonce inside the proof must match the original commitment nonce.
  3. The application code hash must match a whitelisted application code hash.

Security Analysis: Three properties must hold for the security of such applications:

  1. The session’s private key must be unknown to the data carrier.
  2. The commitment nonce must be unknown prior to query insertion to the data carrier.
  3. The device application must function in the described way.

We will further examine all three properties. The first property is critical. With possession of the private key, a data carrier could run the query execution at any time without the ledger device. That would imply a data carrier can predict the random value for every query without any effort. All the security guarantees rely on the fact that the private key is unknown. Gaining knowledge of the device key is difficult, but not impossible. It relies on the tamper-state memory which may be possible. Nevertheless, the process of reading the memory is generally extremely difficult and expensive without any guarantee of success. Costs can easily exceed hundreds of thousands or millions of US dollars. For very successful applications, these costs may still be too low. In such a scenario, application developers may rely on multiple different devices for their random value generation, linearly increasing the costs for a successful attack.

The second property is important since otherwise a data carrier may compute the result before a user submits his query. It can be prevented with the proper choice for the query parameters. Since there can only be one query per query id, any attempt to successfully compute random values beforehand, must correctly guess all query parameters. The data carrier has only one chance to guess these parameters correctly. In case he fails to do so, the attempt may be detected by users after not receiving a result for their query.

Choosing a commitment nonce which may not be predicted by the data carrier can be done the following: In the case of Ethereum, a user may choose the hash over all block variables, i.e., the current block’s coinbase, timestamp, gas limit and the last block hash. Additionally, he chooses a dT that is higher than the block time in Ethereum. This yields a very difficult prediction of the commitment nonce for the data carrier. The data carrier cannot predict the block variables unless he colludes with miners. Even in that case, they have only one chance of correctly predicting all variables and a failure would be detectable.

Finally, the application code for the device must be verified manually. That process involves generating the application’s code hash for every given source code and comparing it to the whitelisted hashes. Each application’s source code must bijectively match one of the whitelisted hashes. Furthermore, every given source code must be checked for its logic. We believe this to be a long and error-prone process, especially after trying to read the exemplary implementation’s source code ourselves. Though, increased code readability and high-quality documentation may help in this process.

Of note, a data carrier may choose not to submit the results of successful query executions. He may do so for unknown reasons, but an application can secure itself from giving monetary incentives to the data carrier by not refunding users after a data carrier has stopped submitted the result for a given query. Furthermore, there is no denial-of-service protection given and the data carrier is a single point of failure. Consequently, there should not be any timeout in requesting applications.

In addition, ransoming a winning player may be an issue depending on the implementation of using applications. If the callback for submitting queries is restricted only to be used by the data carrier, he could go to a winning player. By providing the proof for the given query, he could prove to him that he is in fact a winner. Due to the callback being restricted only to the data carrier, the data carrier may only publish the result after receiving money from the winning player. Allowing the submission of queries for anyone mitigates this risk. Firstly, it poses no threat to allow the submission for anyone, because only results with valid proofs will be accepted. Secondly, it allows a ransomed winning player to submit the proof himself. To prove to him that he is in fact the winning player, the data carrier must provide the whole proof. Otherwise, the ransomed player cannot be sure that he is really the winner. At the time of the writing, the exemplary application implementation of Provable is vulnerable to this attack since it does in fact restrict the submission of the result only to the data carrier.

Conclusion

We have looked at two methods for multi-party randomness in Solidity. While the commitment approach is not very useful for most real-world use cases, using an oracle is your best bet at this time. However, it is most definitely not ideal as it is a centralized solution. Unfortunately, there is no perfect approach at this point in time.

The future: This might change quite soon. With the introduction of ETH2.0 and their Proof of Stake algorithm, the randomness generation may be used by smart contracts as well. We will discuss the ETH2.0 approach as well as other POS algorithms and how that would help randomness in smart contracts in a later blog post.


Markus Waas

Solidity Developer

More great blog posts from Markus Waas

  • Solidity ChatGPT

    How to use ChatGPT with Solidity

    Using ​the Solidity Scholar and other GPT tips

    Welcome your new best friend as a Solidity developer: ChatGPT. If you're a developer and not using ChatGPT yet, then what the hell are you doing? Let's explore some unique ways this can help you as a Solidity developer. You can just chat directly with ChatGPT or you can use custom GPTs. I have...

  • Uniswap 4

    How to ​integrate Uniswap 4 and create custom hooks

    Let's dive into Uniswap v4's new features and integration

    Uniswap v4 adds several key updates to improve gas efficiency, customizability, and functionality. So let's not lose time and dive into it! By now you've probably heard of Uniswap and so-called AMMs (automated market makers). But if you're not familiar with Uniswap yet, it's a fully decentralized...

  • Wormhole

    How to integrate Wormhole in your smart contracts

    Entering a New Era of Blockchain Interoperability

    Wormhole began as a token bridge between Ethereum and Solana and has since expanded into a decentralized interoperability protocol for multiple blockchain ecosystems. Wormhole now supports many chains like Ethereum, Cosmos, Polkadot, Injective and many more. It makes cross-chain communication...

  • Randomness Randao

    Solidity Deep Dive: New Opcode 'Prevrandao'

    All you need to know about the latest opcode addition

    Let’s back up for a second and figure out what has changed since ‘ The Merge ’. The upgrade finally brought a new consensus mechanism to Ethereum. Instead of the old Proof of Work, blocks are now produced via Proof of Stake . Proof of Work finds consensus via block hashes and a process called...

  • Arbitrum Nitro

    How Ethereum scales with Arbitrum Nitro and how to use it

    A blockchain on a blockchain deep dive

    Have you heard of Arbitrum Nitro? The new WAVM enables Plasma but for smart contracts in a super efficient way! It enables having a side chain with guarantees of the Ethereum mainnet chain. Arbitrum has already been one of the most successful Layer 2s so far, and the new Nitro is a major upgrade...

  • Merkle Tree Guide

    The Ultimate Merkle Tree Guide in Solidity

    Everything you need to know about Merkle trees and their future

    Most of you probably have heard of Merkle trees by now. They are used everywhere in the world of blockchain. But are you really sure exactly How they work? What the best ways to use them are? What the future holds for Merkle trees? This is not a Merkle tree. What are Merkle Trees? Ralph Merkle...

  • TheGraph

    The New Decentralized The Graph Network

    What are the new features and how to use it

    Quite some time has passed since my last post about The Graph. If you don't know what it is and why it's useful, go and read the post. It's still relevant and explains in detail why it's needed and how to use it with the centralized hosted service. But the tl;dr is: Events on a blockchain are a...

  • zkSync

    zkSync Guide - The future of Ethereum scaling

    How the zero-knowledge tech works and how to use it

    Have you heard of zkSync and its new zkEVM? The new zkSync EVM enables Zero-knowledge proofs for any smart contract executions. What does that mean? Well read on later. But what it enables is having a side chain with similar (not not exact) guarantees of the Ethereum mainnet chain. How cool is...

  • Exploring the Openzeppelin CrossChain Functionality

    What is the new CrossChain support and how can you use it.

    For the first time Openzeppelin Contracts have added CrossChain Support. In particular the following chains are currently supported: Polygon: One of the most popular sidechains right now. We've discussed it previously here. Optimism: A Layer 2 chain based on optimistic rollups. We discussed the...

  • Hedera Preview

    Deploying Solidity Contracts in Hedera

    What is Hedera and how can you use it.

    Hedera is a relatively new chain that exists since a few years, but recently added token service and smart contract capabilities. You can now write and deploy Solidity contracts to it, but it works a little differently than what you might be used to. Let's take a look! What is the Hedera Network?...

  • Foundry Forge

    Writing ERC-20 Tests in Solidity with Foundry

    Blazing fast tests, no more BigNumber.js, only Solidity

    Maybe you are new to programming and are just starting to learn Solidity? One annoyance for you might have been that you were basically required to learn a second language (JavaScript/TypeScript) to write tests. This was undoubtedly a downside which is now gone with the new foundry framework. But...

  • Saving Money ERC-4626

    ERC-4626: Extending ERC-20 for Interest Management 

    How the newly finalized standard works and can help you with Defi

    Many Defi projects have an ERC-20 token which represents ownership over an interest generating asset. This is for example the case for lending/borrowing platforms (money markets) like Compound and Aave. As a lender you will receive aDAI or cDAI. And since lenders receive interest payments for...

  • ERC721-Permit

    Advancing the NFT standard: ERC721-Permit

    And how to avoid the two step approve + transferFrom with ERC721-Permit (EIP-4494)

    There's a new standard in the making. To understand how this really works, I recommend you take a look at my tutorials on: ERC721 ERC20-Permit ecrecover incl EIP712 But we'll try to cover the basics here also. You might be familiar already with ERC20-Permit (EIP-2612). It adds a new permit...

  • Moonbeam

    Moonbeam: The EVM of Polkadot

    Deploying and onboarding users to Moonbeam or Moonriver

    We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain Evmos Aurora (NEAR) But Moonbeam is unique since it's a parachain of the Polkadot ecosystem. It only just launched which means you are now able to deploy smart contracts to the chain. Being able to deploy EVM...

  • Trading

    Advanced MultiSwap: How to better arbitrage with Solidity

    Making multiple swaps across different decentralized exchanges in a single transaction

    If you want maximum arbitrage performance, you need to swap tokens between exchanges in a single transaction. Or maybe you just want to save gas on certain swaps you perform regularly. Or maybe you have your own custom use case for swapping between decentralized exchanges. And of course maybe you...

  • Solana Solidity

    Deploying Solidity Smart Contracts to Solana

    What is Solana and how can you deploy Solidity smart contracts to it?

    Solana is a new blockchain focusing on performance. It supports smart contracts like Ethereum which they call Programs. You can develop those in Rust, but there's also a new project now to compile Solidity to Solana. In other words you can deploy your contracts written in Solidity now to Solana!...

  • People making fun

    Smock 2: The powerful mocking tool for Hardhat

    Features of smock v2 and how to use them with examples

    We’ve covered mocking contracts before as well as the first version of the new mocking tool Smock 2. It simplifies the mocking process greatly and also gives you more testing power. You’ll be able to change the return values for functions as well as changing internal contract storage directly!...

  • Evmos

    How to deploy on Evmos: The first EVM chain on Cosmos

    Deploying and onboarding users to Evmos

    We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain Aurora Chain (NEAR) Optimism But this time we will do into the exciting new world of Cosmos. Many of the most interesting projects are currently building in the ecosystem and you can expect a lot to happen here in...

  • Diamonds

    EIP-2535: A standard for organizing and upgrading a modular smart contract system.

    Multi-Facet Proxies for full control over your upgrades

    The EIP-2535 standard has several projects already using it, most notably Aavegotchi holding many millions of dollars. What is it and should you use it instead of the commonly used proxy upgrade pattern? What is a diamond? We're not talking about diamond programmer hands here of course. A diamond...

  • MultiTrade

    MultiSwap: How to arbitrage with Solidity

    Making multiple swaps across different decentralized exchanges in a single transaction

    If you want maximum arbitrage performance, you need to swap tokens between exchanges in a single transaction. Or maybe you just want to save gas on certain swaps you perform regularly. Or maybe you have your own custom use case for swapping between decentralized exchanges. And of course maybe you...

  • Optimism Ethereum

    The latest tech for scaling your contracts: Optimism

    How the blockchain on a blockchain works and how to use it

    Have you heard of Optimism? The new Optimistic VM enables Plasma but for smart contracts! What does that mean? Well read on. But what it enables is having a side chain with guarantees of the Ethereum mainnet chain. How cool is that? And you can already use it for several apps on mainnet....

  • Aurora NEAR Protocol

    Ultimate Performance: The Aurora Layer2 Network

    Deploying and onboarding users to the Aurora Network powered by NEAR Protocol

    We've covered several Layer 2 sidechains before: Polygon xDAI Binance Smart Chain But today might be the fastest of them all. On top it's tightly connected to the NEAR protocol ecosystem, a PoS chain with a scalable sharding design. And of course they have a bridge to Ethereum! What is the Aurora...

  • ecrecover

    What is ecrecover in Solidity?

    A dive into the waters of signatures for smart contracts

    Ever wondered what the hell the deal is with the ecrecover command in Solidity? It's all about signatures and keys... What is ecrecover ? You may have seen ecrecover in a Solidity contract before and wondered what exactly the deal with this was. Well you came across the EVM precompile ecrecover....

  • Binance Smart Chain

    How to use Binance Smart Chain in your Dapp

    Deploying and onboarding users to the Binance Smart Chain (BSC)

    Defi has been a major contributor to the Binance Smart Chain taking off recently. Along with increasing gas costs on Ethereum mainnet which are actually at one of the lowest levels since a long time at the time of this writing, but will likely pump again at the next ETH price pump. So how does...

  • Using the new Uniswap v3 in your contracts

    What's new in Uniswap v3 and how to integrate Uniswap v3

    If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external liquidity providers that can add tokens to smart contract pools and...

  • London

    What's coming in the London Hardfork?

    Looking at all the details of the upcoming fork

    The Berlin Hardfork only just went live on April 14th after block 12,224,00. Next up will be the London Hardfork in July which will include EIP-1559 and is scheduled for July 14th (no exact block decided yet). So let's take a look at the new changes and what you need to know as a developer....

  • Matrix Simulation

    Welcome to the Matrix of blockchain

    How to get alerted *before* getting hacked and prevent it

    Defi hacks alone have totaled $285M just since 2019. Let's take the Balancer hack for example. The hack was exploiting the fact that a pool with a deflationary token STA (Statera) was created. The pool accumulated a significant liquidity when it was eventually drained by the hack. Read my post on...

  • Computer Deployment Terminal

    The Ultimate Ethereum Mainnet Deployment Guide

    All you need to know to deploy to the Ethereum mainnet

    We all love Ethereum, so you've built some great smart contracts. They are tested intensely with unit-tests and on testnets. Now it's finally time to go to mainnet. But this is a tricky business... 1. What exactly is a deployment transaction? First let's quickly discuss what a contract deployment...

  • Sushi

    SushiSwap Explained!

    Looking at the implementation details of SushiSwap

    You've probably heard of SushiSwap by now. The Uniswap fork brought new features like staking and governance to the exchange. But how exactly are the contracts behind it working? It's actually not too difficult. Knowing how this works in detail will be a great way to learn about Solidity and...

  • Solidity Overview

    Solidity Fast Track 2: Continue Learning Solidity Fast

    Continuing to learn Solidity fast with the advanced basics

    Previously we learned all of the basics in 20 minutes. If you are a complete beginner, start there and then come back here. Now we'll explore some more advanced concepts, but again as fast as possible. 1. Saving money with events We all know gas prices are out of control right now, so it's more...

  • Berlin

    What's coming in the Berlin Hardfork?

    Looking at all the details of the upcoming fork

    The Berlin Hardfork is scheduled for April 14th after block 12,224,00. Later to be followed by the London Hardfork in July which will include EIP-1559. So let's take a look at the new changes and what you need to know as a developer. EIP-2929: Increased gas costs for state access EIP-2929 will...

  • Gas

    Using 1inch ChiGas tokens to reduce transaction costs

    What are gas tokens and example usage for Uniswap v2

    Gas prices have been occasionally above 1000 Gwei in the past in peak times. Given an ETH price of over 1000 USD, this can lead to insane real transaction costs. In particular this can be a pain when using onchain DEX's like Uniswap, resulting in hundreds of dollars transaction fees for a single...

  • Zeppelin

    Openzeppelin Contracts v4 in Review

    Taking a look at the new Openzeppelin v4 Release

    The Openzeppelin v4 contracts are now available in Beta and most notably come with Solidity 0.8 support. For older compiler versions, you'll need to stick with the older contract versions. The beta tag means there still might be small breaking changes coming for the final v4 version, but you can...

  • Loan

    EIP-3156: Creating a standard for Flash Loans

    A new standard for flash loans unifying the interface + wrappers for existing ecosystems

    As we've discussed last week, flash loans are a commonly used pattern for hacks. But what exactly are they and how are they implemented in the contracts? As of right now each protocol has its own way of implementing flash loans. With EIP-3156 we will get a standardized interface. The standard was...

  • Zero

    Tornado.cash: A story of anonymity and zk-SNARKs

    What is Tornado.cash, how to use it and the future

    With the recent Yearn vault v1 hack from just a few days ago, we can see a new pattern of hacks emerging: Get anonymous ETH via tornado.cash. Use the ETH to pay for the hack transaction(s). Use a flash loan to decrease capital requirements. Create some imbalances given the large capital and...

  • Roulette Game

    High Stakes Roulette on Ethereum

    Learn by Example: Building a secure High Stakes Roulette

    It's always best to learn with examples. So let's build a little online casino on the blockchain. We'll also make it secure enough to allow playing in really high stakes by adding a secure randomness generator. Let's discuss the overall design first. Designing the contract Before we program...

  • Meta Transaction

    How to implement generalized meta transactions

    We'll explore a powerful design for meta transactions based on 0x

    Enabling meta transactions inside your contract is a powerful addition. Requiring users to hold ETH to pay for gas has always been and still is one of the biggest user onboarding challenges. Who knows how many more people would be using Ethereum right now if it was just a simple click? But...

  • Map

    Utilizing Bitmaps to dramatically save on Gas

    A simple pattern which can save you a lot of money

    As you may know the most expensive operation in Ethereum is storing data (SSTORE). So you should always look for ways to reduce the storage requirements. Let's explore a particularly useful one: Bitmaps. How to implement a simple Bitmap Let's assume we want to store 10 boolean values. Usually you...

  • Uniswap

    Using the new Uniswap v2 as oracle in your contracts

    How does the Uniswap v2 oracle function and how to integrate with it

    We've covered Uniswap previously here. But let's go through the basics first again. What is UniSwap? If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized...

  • People making fun

    Smock: The powerful mocking tool for Hardhat

    Features of smock and how to use them with examples

    We’ve covered mocking contracts before, but now there’s an additional great tool available: smock. It simplifies the mocking process greatly and also gives you more testing power. You’ll be able to change the return values for functions as well as changing internal contract storage directly! How...

  • 721 Insurance

    How to build and use ERC-721 tokens in 2021

    An intro for devs to the uniquely identifying token standard and its future

    The ERC-721 standard has been around for a while now. Originally made popular by blockchain games, it's more and more used for other applications like Defi. But what exactly is it? A non-fungible token (NFT) is a uniquely identifying token. The word non-fungible implies you cannot just replace...

  • Set Protocol

    Trustless token management with Set Protocol

    How to integrate token sets in your contracts

    With Set Protocol you can create baskets of tokens that give users different levels of exposure to underlying assets (currently only ERC-20 tokens). Set Protocol and their TokenSet functionality is the perfect example for making use of the new paradigm of Defi and composability. You can let...

  • Solidity 0.8

    Exploring the new Solidity 0.8 Release

    And how to upgrade your contracts to Solidity 0.8

    We are getting closer to that Solidity 1.0 release (unless of course after 0.9 comes 0.10). Now Solidity 0.8 has been released only 5 months after the 0.7 release! Let's explore how you can migrate your contracts today... New features & how to use them Let's look at the two big new features which...

  • Multi Currency

    How to build and use ERC-1155 tokens

    An intro to the new standard for having many tokens in one

    ERC-1155 allows you to send multiple different token classes in one transaction. You can imagine it as transferring Chinese Yuan and US Dollars in a single transfer. ERC-1155 is most commonly known for being used in games, but there are many more use cases for it. First of all though, what are...

  • RSK

    Leveraging the power of Bitcoins with RSK

    Learn how RSK works and how to deploy your smart contracts to it

    I'm always interested in what other ways one can use their blockchain and Solidity skills. While many projects are still only in the planning or in testnet status, with Rootstock (RSK) you can transfer mainnet Bitcoins to an EVM sidechain and vice-versa already today. Utilizing the power of the...

  • Solidity Overview

    Solidity Fast Track: Learn Solidity Fast

    'Learn X in Y minutes' this time with X = Solidity 0.7 and Y = 20

    You might be familiar with the Learn X in Y minutes. For example you could learn JavaScript in 20 minutes at https://learnxinyminutes.com/docs/javascript/. Unfortunately there is no equivalent for Solidity, but this is about to change. Do you have 20 minutes to learn all of the basics? We even...

  • Decentralized Etherscan

    Sourcify: The future of a Decentralized Etherscan

    Learn how to use the new Sourcify infrastructure today

    We all love Etherscan. It's a great tool to interact with contracts, read the source codes or just see the status of your transactions. But unfortunately as great as it is, we should not forget that it's a centralized service. The website could be taken down any day. This kind of defeats the...

  • 0x Contracts

    Integrating the 0x API into your contracts

    How to automatically get the best prices via 0x

    How can you add 0x to your contracts to automatically convert between tokens? We have done this in a similar fashion before with Uniswap and Balancer. The 0x API has a bit of a twist. Let's take a look why... Why you want 0x in your contracts? It's simple: Okay, but seriously. Let's see why the...

  • 777

    How to build and use ERC-777 tokens

    An intro to the new upgraded standard for ERC-20 tokens

    The new upgraded standard for ERC-20 tokens is becoming more and more popular. It's fully backwards compatible, you can easily create one using the Openzeppelin contracts and there are many interesting new features not available in ERC-20. Should you upgrade from ERC-20? Well let's look into what...

  • Compound Governance

    COMP Governance Explained

    How Compound's Decentralized Governance is working under the hood

    You might have heard about the COMP token launch. With a current market cap of over 350 million USD, the token has accumulated massive value. But what is the actual utility of COMP? It's a governance token. Compound being a fully decentralized system (or at least on the way towards it), has a...

  • Stuck Car

    How to prevent stuck tokens in contracts

    And other use cases for the popular EIP-165

    Do you remember the beginning of the Dark Forest story? If not, let's look at it again: Somebody sent tokens to a smart contract that was not intended to receive tokens. This perfectly illustrates one of the issues not only with ERC-20 tokens, but generally with smart contracts. How can we find...

  • Automated Security Tools

    Understanding the World of Automated Smart Contract Analyzers

    What are the best tools today and how can you use them?

    As we all know, it's very difficult writing a complex, yet fully secure smart contract. Without the proper methods, chances are you will have many security issues. Automated security testing tools already exist and can be a great help. One of the main challenges for these tools is to maximize...

  • Long Way

    A Long Way To Go: On Gasless Tokens and ERC20-Permit

    And how to avoid the two step approve + transferFrom with ERC20-Permit (EIP-2612)!

    It's April 2019 in Sydney. Here I am looking for the Edcon Hackathon inside the massive Sydney university complex. It feels like a little city within a city. Of course, I am at the wrong end of the complex and I realize to get to the venue hosting the Hackathon I need to walk 30 minutes to the...

  • Waffles

    Smart Contract Testing with Waffle 3

    What are the features of Waffle and how to use them.

    Waffle has been a relatively recent new testing framework, but has gained a lot of popularity thanks to its simplicity and speed. Is it worth a try? Absolutely. I wouldn't run and immediately convert every project to it, but you might want to consider it for new ones. It's also actively being...

  • xDai

    How to use xDai in your Dapp

    Deploying and onboarding users to xDai to avoid the high gas costs

    Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at xDai as a solution for your Dapp. What are...

  • 15 Stacks

    Stack Too Deep

    Three words of horror

    You just have to add one tiny change in your contracts. You think this will take you only a few seconds. And you are right, adding the code took you less than a minute. All happy about your coding speed you enter the compile command. With such a small change, you are confident your code is...

  • Chainlink Thumbnail

    Integrating the new Chainlink contracts

    How to use the new price feeder oracles

    By now you've probably heard of Chainlink. Maybe you are even participating the current hackathon? In any case adding their new contracts to retrieve price feed data is surprisingly simple. But how does it work? Oracles and decentralization If you're confused about oracles, you're not alone. The...

  • TheGraph

    TheGraph: Fixing the Web3 data querying

    Why we need TheGraph and how to use it

    Previously we looked at the big picture of Solidity and the create-eth-app which already mentioned TheGraph before. This time we will take a closer look at TheGraph which essentially became part of the standard stack for developing Dapps in the last year. But let's first see how we would do...

  • truffle buidler typescript

    Adding Typescript to Truffle and Buidler

    How to use TypeChain to utilize the powers of Typescript in your project

    Unlike compiled languages, you pretty much have no safeguards when running JavaScript code. You'll only notice errors during runtime and you won't get autocompletion during coding. With Typescript you can get proper typechecking as long as the used library exports its types. Most Ethereum...

  • Balance Rope

    Integrating Balancer in your contracts

    What is Balancer and how to use it

    What is Balancer? Balancer is very similar to Uniswap. If you're not familiar with Uniswap or Balancer yet, they are fully decentralized protocols for automated liquidity provision on Ethereum. An easier-to-understand description would be that they are decentralized exchanges (DEX) relying on...

  • mousetrap

    Navigating the pitfalls of securely interacting with ERC20 tokens

    Figuring out how to securely interact might be harder than you think

    You would think calling a few functions on an ERC-20 token is the simplest thing to do, right? Unfortunately I have some bad news, it's not. There are several things to consider and some errors are still pretty common. Let's start with the easy ones. Let's take a very common token: ... Now to...

  • Aave

    Why you should automatically generate interests from user funds

    How to integrate Aave and similar systems in your contracts

    If you're writing contracts that use, hold or manage user funds, you might want to consider using those funds for generating free extra income. What's the catch? That's right, it's basically free money and leaving funds unused in a contract is wasting a lot of potential. The way these...

  • Matic Logo

    How to use Polygon (Matic) in your Dapp

    Deploying and onboarding users to  Polygon  to avoid the high gas costs

    Gas costs are exploding again, ETH2.0 is still too far away and people are now looking at layer 2 solutions. Here's a good overview of existing layer 2 projects: https://github.com/Awesome-Layer-2/awesome-layer-2. Today we will take a closer look at Polygon (previously known as Matic) as a...

  • Migrating from Truffle to Buidler

    And why you should probably keep both.

    Why Buidler? Proper debugging is a pain with Truffle. Events are way too difficult to use as logging and they don't even work for reverted transactions (when you would need them most). Buidler gives you a console.log for your contracts which is a game changer. And you'll also get stack traces...

  • Factory

    Contract factories and clones

    How to deploy contracts within contracts as easily and gas-efficient as possible

    The factory design pattern is a pretty common pattern used in programming. The idea is simple, instead of creating objects directly, you have an object (the factory) that creates objects for you. In the case of Solidity, an object is a smart contract and so a factory will deploy new contracts for...

  • IPFS logo

    How to use IPFS in your Dapp?

    Using the interplanetary file system in your frontend and contracts

    You may have heard about IPFS before, the Interplanetary File System. The concept has existed for quite some time now, but with IPFS you'll get a more reliable data storage, thanks to their internal use of blockchain technology. Filecoin is a new system that is incentivizing storage for IPFS...

  • tiny-kitten

    Downsizing contracts to fight the contract size limit

    What can you do to prevent your contracts from getting too large?

    Why is there a limit? On November 22, 2016 the Spurious Dragon hard-fork introduced EIP-170 which added a smart contract size limit of 24.576 kb. For you as a Solidity developer this means when you add more and more functionality to your contract, at some point you will reach the limit and when...

  • EXTCODEHASH

    Using EXTCODEHASH to secure your systems

    How to safely integrate anyone's smart contract

    What is the EXTCODEHASH? The EVM opcode EXTCODEHASH was added on February 28, 2019 via EIP-1052. Not only does it help to reduce external function calls for compiled Solidity contracts, it also adds additional functionality. It gives you the hash of the code from an address. Since only contract...

  • Uniswap

    Using the new Uniswap v2 in your contracts

    What's new in Uniswap v2 and how to integrate Uniswap v2

    Note : For Uniswap 3 check out the tutorial here. What is UniSwap? If you're not familiar with Uniswap yet, it's a fully decentralized protocol for automated liquidity provision on Ethereum. An easier-to-understand description would be that it's a decentralized exchange (DEX) relying on external...

  • Continuous Integration

    Solidity and Truffle Continuous Integration Setup

    How to setup Travis or Circle CI for Truffle testing along with useful plugins.

    Continuous integration (CI) with Truffle is great for developing once you have a basic set of tests implemented. It allows you to run very long tests, ensure all tests pass before merging a pull request and to keep track of various statistics using additional tools. We will use the Truffle...

  • Devcon 6

    Upcoming Devcon 2021 and other events

    The Ethereum Foundation just announced the next Devcon in 2021 in Colombia

    Biggest virtual hackathon almost finished First of all, the current HackMoney event has come to an end and it has been a massive success. One can only imagine what kind of cool projects people have built in a 30 days hackathon. All final projects can be seen at:...

  • ERC-2020

    The Year of the 20: Creating an ERC20 in 2020

    How to use the latest and best tools to create an ERC-20 token contract

    You know what an ERC-20 is, you probably have created your own versions of it several times (if not, have a look at: ERC-20). But how would you start in 2020 using the latest tools? Let's create a new ERC-2020 token contract with some basic functionality which focuses on simplicity and latest...

  • hiring

    How to get a Solidity developer job?

    There are many ways to get a Solidity job and it might be easier than you think!

    You have mastered the basics of Solidity, created your first few useful projects and now want to get your hands on some real-world projects. Getting a Solidity developer job might be easier than you think. There are generally plenty of options to choose from and often times not a lot of...

  • People making fun

    Design Pattern Solidity: Mock contracts for testing

    Why you should make fun of your contracts

    Mock objects are a common design pattern in object-oriented programming. Coming from the old French word 'mocquer' with the meaning of 'making fun of', it evolved to 'imitating something real' which is actually what we are doing in programming. Please only make fun of your smart contracts if you...

  • React and Ethereum

    Kickstart your Dapp frontend development with create-eth-app

    An overview on how to use the app and its features

    Last time we looked at the big picture of Solidity and already mentioned the create-eth-app. Now you will find out how to use it, what features are integrated and additional ideas on how to expand on it. Started by Paul Razvan Berg, the founder of sablier, this app will kickstart your frontend...

  • Solidity Overview

    The big picture of Solidity and Blockchain development in 2020

    Overview of the most important technologies, services and tools that you need to know

    Now, I do not know about you, but I remember when I first started with Solidity development being very confused by all the tools and services and how they work in connection with one another. If you are like me, this overview will help you understand the big picture of Solidity development. As I...

  • Design Pattern Solidity: Free up unused storage

    Why you should clean up after yourself

    You may or may not be used to a garbage collectors in your previous programming language. There is no such thing in Solidity and even if there was a similar concept, you would still be better off managing state data yourself. Only you as a programmer can know exactly which data will not be used...

  • How to setup Solidity Developer Environment on Windows

    What you need to know about developing on Windows

    Using Windows for development, especially for Solidity development, can be a pain sometimes, but it does not have to be. Once you have configured your environment properly, it can actually be extremely efficient and Windows is a very, very stable OS, so your overall experience can be amazing. The...

  • Avoiding out of gas for Truffle tests

    How you do not have to worry about gas in tests anymore

    You have probably seen this error message a lot of times: Error: VM Exception while processing transaction: out of gas Disclaimer : Unfortunately, this does not always actually mean what it is saying when using Truffle , especially for older versions. It can occur for various reasons and might be...

  • Design Pattern Solidity: Stages

    How you can design stages in your contract

    Closely related to the concept of finite-state machines, this pattern will help you restrict functions in your contract. You will find a lot of situations where it might be useful. Any time a contract should allow function calls only in certain stages. Let's look at an example: contract Pool {...

  • Web3 1.2.5: Revert reason strings

    How to use the new feature

    A new Web3 version was just released and it comes with a new feature that should make your life easier. With the latest version 1.2.5, you can now see the the revert reason if you use the new handleRevert option. You can activate it easily by using web3.eth.handleRevert = true . Now when you use...

  • Gaining back control of the internet

    How Ocelot is decentralizing cloud computing

    I recently came across an ambitious company that will completely redefine the way we are using the internet. Or rather, the way we are using its underlying infrastructure which ultimately is the internet. While looking at their offering, I also learned how to get anonymous cloud machines, you...

  • Devcon 5 - Review

    Impressions from the conference

    I had a lot to catch up on after Devcon. Also things didn't go quite as planned, so please excuse my delayed review! This year's Devcon was certainly stormy with a big typhoon warning already on day 1. Luckily (for us, not the people in Tokyo), it went right past Osaka. Nevertheless, a lot of...

  • Devcon 5 - Information, Events, Links, Telegram

    What you need to know

    Devcon 5 is coming up soon and there are already lots of events available, information about Osaka and more. Here is a short overview: Events Events Calendar Events Google Docs Events Kickback Most events are in all three, but if you really want to see all, you will have to look at all three...

  • Design Pattern Solidity: Off-chain beats on-chain

    Why you should do as much as possible off-chain

    As you might have realized, Ethereum transactions are anything but cheap. In particular, if you are computing complex things or storing a lot of data. That means sometimes we cannot put all logic inside Solidity. Instead, we can utilize off-chain computations to help us. A very simple example...

  • Design Pattern Solidity: Initialize Contract after Deployment

    How to use the Initializable pattern

    There are a few reasons why you might want to initialize a contract after deployment and not directly by passing constructor arguments. But first let's look at an example: contract MyCrowdsale { uint256 rate; function initialize(uint256 _rate) public { rate = _rate; } } What's the advantage over...

  • Consensys Blockchain Jobs Report

    What the current blockchain job market looks like

    Consensys published their blockchain jobs report which you can checkout in their Blockchain Developer Job Kit. The most interesting aspects are Blockchain developer jobs have been growing at a rate of 33x of the previous year according to LinkedIns jobs report Typical salary is about...

  • Solidity Design Patterns: Multiply before Dividing

    Why the correct order matters!

    There has been a lot of progress since the beginning of Ethereum about best practices in Solidity. Unfortunately, I have the feeling that most of the knowledge is within the circle of experienced people and there aren’t that many online resources about it. That is why I would like to start this...

  • Devcon 5 Applications closing in one week

    Devcon 5 Applications closing

    Watch out for the Devcon 5 applications. You only have one week left to apply either as Buidler Student Scholarship Press Devcon is by far the biggest and most impressive Ethereum conference in the world. And it's full of developers! I am especially excited about the cool location this year in...

  • Randomness and the Blockchain

    How to achieve secure randomness for Solidity smart contracts?

    Update 2023 : Ethereum transitioned to Proof of Stake! If you are interested in the randomness there, you can now use the updated info over at https://soliditydeveloper.com/prevrandao. When we talk about randomness and blockchain, these are really two problems: How to generate randomness in smart...

© 2024 Solidity Dev Studio. All rights reserved.

This website is powered by Scrivito, the next generation React CMS.